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Quantum planes and quantum cylinders from Poisson
homogeneous spaces
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Faculteit der Wiskunde en Informatica, Universiteit van Amsterdam, The Netherlands

Received 31 July 1995

Abstract. Quantum planes and a new quantum cylinder are obtained as quantization of Poisson
homogeneous spaces of two different Poisson structures on classical Euclidean group E(2).

1. Introduction

The concept of the homogeneous space of a group is, maybe, one of the most widespread
mathematical concepts, lying at the very foundation of, for example, harmonic analysis and
the symmetries of physical systems. Right from the beginning of the theory of quantum
groups, clarifying the concept of a quantum homogeneous space for a quantum group has
been considered to be of the utmost importance (see [11] for example), although up until now
a complete theory has been absent. The purpose of this work is to study the homogeneous
quantum spaces of Euclidean quantum groups through an analysis of the ‘semiclassical’ limit
of the Poisson structure on the classical group. Our aim is to verify to what extent the results
in [12] and [13] relating covariant Poisson structures on the sphere and the one-parameter
family of quantum spheres [11] are still valid in this case (although we will not deal with
the analytical aspects as these are extensively covered in those references). There are two
different versions of the Euclidean quantum group, introduced in [15] and [3] respectively;
in [3] it is also shown how they can both be obtained through a contraction procedure
from SUh(2). The way in which they are related is explained in [1]. Quite a lot of work
has been done on these groups, whose interest lies both in that they are an easy example
of the non-semisimple and non-compact case and in physical applications. For example,
in [16] the standard Euclidean quantum group is treated at an analytical level, in [15] its
relations withq-special functions were first studied and later in [2] and [9] (the last of a
series of papers and useful for further references)q-harmonic analysis is more thoroughly
investigated. The roots of unity theory [4] for the standard case were examined in [5], and
these were hypothesized [1] and proved [4] to be trivial in the non-standard case. Quantum
homogeneous spaces in the standard case were studied in [2], through duality arguments
involving the quantized universal enveloping algebra. The semiclassical limit of these results
is here shown to fit into the framework of the classification of covariant Poisson structures.
This is the content of section 2. Furthermore, in the non-standard case the semiclassical
limit suggests quite naturally that homogeneous spaces should be of cylinder-type. The
covariant Poisson structures on this cylinder are classified in section 3 and in section 4
an explicit quantum cylinder whose classical limit is the Poisson homogeneous cylinder is
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given through generators and relations, verifying conditions explained in [6] for quantum
homogeneous spaces.

2. The standard Poisson algebraicE(2) and quantum planes

The classical two-dimensional Euclidean group is usually written as the space of complex
matrices of the form(

v n

0 1

)
where|v| = 1.

Its function (polynomial) algebra can thus be seen as a commutative algebra on
generatorsv, v̄, n, n̄, with the additional relationvv̄ = 1. The matrix form also immediately
gives us the Hopf algebra structure which we explicitly write down as follows

1v = v ⊗ v 1v̄ = v̄ ⊗ v̄

1n = v̄ ⊗ n + n ⊗ 1 1n̄ = v ⊗ n̄ + n̄ ⊗ 1

S(v) = v̄ S(n) = −vn S(n̄) = −v̄n̄

ε(v) = 1 ε(n) = ε(n̄) = 0

and the usual∗-structure is given by

v∗ = v̄ n∗ = n̄ ∗2 = Id.

Let us define on this function algebra the following quadratic Poisson bracket (a standard
bracket used in what follows):

{v, n} = vn {v, n̄} = vn̄ {n, n̄} = nn̄ {v, v̄} = 0.

Remark 2.1. These formulae define a Poisson bracket on the algebra of polynomial
functions onE(2). That is why we talk about analgebraic Poisson structure and not
of a Lie–Poisson structure that should be given on the whole algebra of smooth functions.
In the following we will sometimes drop the adjective algebraic.

Proposition 2.2. The formulae above define a Poisson algebraic structure onE(2).

Proof. Let us write the Poisson bivector corresponding to the bracket as follows:

w(v, n, n̄) = vn∂v ∧ ∂n + vn̄∂v ∧ ∂n̄ + nn̄∂n ∧ ∂n̄.

By direct computation this Poisson bivector verifies the multiplicativity property:

w(gg′) = ((Lg)
′
g′ ⊗ (Lg)

′
g′)w(g′) + ((Rg′)′g ⊗ (Rg′)′g)(w(g))

whereLg andRg stand respectively for left and right translations inE(2). �

Differentiating the Poisson bivector at the origin gives a coalgebra structure on the Lie
algebrae(2). ChoosingJ = ∂v|e, X = ∂n|e, Y = ∂n̄|e as generators of the Lie algebra we
have the coalgebra structure:

δ(J ) = 0 δ(X) = J ∧ X δ(Y ) = J ∧ Y.

It is easy to show that such a structure is not a coboundary one.
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The Poisson bivector mentioned above defines the associated homomorphismBw from
the cotangent to the tangent bundle ofE(2) that can be easily calculated to be

dv 7→ −v(n∂n + n̄∂n̄) = Xv

dn 7→ n(−v∂v + n̄∂n̄) = Xn

dn̄ 7→ n̄(n∂n + v∂v) = Xn̄.

Thus we have the differentiable distribution of tangent subspaces:

(v, n, n̄) → (Xv, Xn, Xn̄)

whose integral manifolds are the symplectic leaves of the Poisson structure.

Remark 2.3. The geometric description of symplectic leaves.Let us observe that for a
generic point of the space(v, n, n̄) we have

vnn̄Xv + n̄Xn + nXn̄ = 0

and thus the tangent space is generically two dimensional.
All the points of the form(v, 0, 0) are zero-dimensional symplectic leaves of this Poisson

distribution. The set of all these points is nothing other thanS1 viewed as a subgroup of
E(2), and thus, being a union of leaves, it is a Poisson algebraic subgroup. It is not difficult
to see that this subgroup together with all its finite subgroups forms the only Poisson
algebraic subgroup ofE(2).

At this point it could be interesting to calculate the primitive spectrum of standard
Funq(E(2)) to see whether it has a good relation with the symplectic foliation. The primitive
spectrum of this algebra is not very difficult to discern after we have noticed that it can be
given the form of an iterated skew (twisted) polynomial ring (see [7, 8]).

Corollary 2.4. The E(2)-homogeneous spaceR2 has a natural Poisson structure induced
by the algebraic Poisson structure onE(2).

The projection mapπ : E(2) → R2 is nothing other than the map that sends
(v, n, n̄) → ( 1

2(n + n̄), −i 1
2(n − n̄)). Denotingz and z̄ the coordinates on the plane it

can then immediately be seen that the Poisson structure on the plane is

{z, z̄} = zz̄.

By definition such a structure is(E(2), w)-covariant. We recall that by covariance we mean
that the action mapφ : E(2) × R2 → R2 is a Poisson map when the first space is given
the product Poisson structure.

Remark 2.5. The Poisson structure just defined on the plane has a symplectic foliation
consisting of two families of zero-dimensional leaves parametrized by points of two
orthogonal lines and four two-dimensional leaves separated by those points. Observing
that the usual quantum plane structureFq , the algebra on twoq-commuting generators, is
a quantization of this Poisson bracket, it is no surprise that the primitive spectrum of this
algebra is in bijective correspondence with the foliation (see [14] for the explicit expression
of the primitive spectrum).
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The next problem is that of classifying all(E(2), w)-covariant Poisson structures on the
plane. We will follow [17] where the covariance condition is rewritten at the infinitesimal
level. We will denote by

φ : E(2) × R2 → R2

the action map, withφx = φ(·, x) ∀x ∈ R2 and φg = φ(g, ·) ∀g ∈ E(2). With this
notation condition 2.2 of [17] states that covariant structures on the plane are in one-to-one
correspondence with elementsρ ∈ ∧2T0(R

2) such that

(φ0)∗δ(X) + X · ρ = 0 ∀X ∈ G0

whereG0 is the tangent algebra of the rotation subgroup—the stabilizer of 0 inR2, and
X · ρ is given by

d

dt
((φexp(tX))∗ρ)

∣∣∣∣
t=0

.

In fact such aρ can be extended to a Poisson bivector field onR2 simply as

ρ(x) = (φ0)∗,g(w(g)) + (φg)∗,0(ρ)

whereg ∈ E(2) is such thatg · 0 = x. Now, asG0 is nothing but the algebra generated by
J and δ(J ) = 0, the above condition can be rewritten asJ · ρ = 0 (simply an invariance
condition) which is always verified. We can then takeρ = k∂1 ∧ ∂2, where the derivatives
are calculated in 0. The corresponding bivector field is

(a, b) 7→ k∂1 ∧ ∂2

and the Poisson bracket on the plane is

{z, z̄} = zz̄ + k.

Note that whenρ = 0 we obtain exactly the Poisson structure on the plane given by
corollary 2.4. We have then just proved the following.

Proposition 2.6. There is a one-parameter family of covariant Poisson structures on the
plane, with respect to the standard Poisson structure onE(2), given by

{z, z̄} = zz̄ + k.

Remark 2.7. In the case in whichk 6= 0 the symplectic foliation changes drastically. The
zero-dimensional symplectic leaves are the points of the hyperbolazz̄ = −k, and they divide
the plane into three two-dimensional symplectic leaves. Following this geometric picture
we will refer to this case as the case of hyperbolic covariant structures. The behaviour of
the symplectic foliation with respect tok can be described through the intersection between
the planez = 0 and the hyperbolic conexy = k (even in the quantum sphere case such a
description is possible).

3. The non-standard Poisson structure and the cylinder

We still deal with the same function algebra but we want to consider another family of
Poisson structures (which we shall refer to as non-standard Poisson structures) given in [10]
and whose quantization gives the so-called non-standard Euclidean quantum group

{v, n} = ω(1 − v) {v, n̄} = −ω(v2 − v) {n, n̄} = ω(n − n̄)

whereω is a non-zero complex number.
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That this bracket gives a Poisson algebraic structure onE(2) (or, in other words, a
family of isomorphic structures) is proven in [10].

The infinitesimal counterpart of the bracket is the coproduct on the Lie algebrae(2)

given by

δ(P1) = 0 δ(P2) = ωP2 ∧ P1 δ(J ) = ωJ ∧ P2.

This is a coboundary coproduct by taking

δ(X) = a dXr r = ωJ ∧ P2.

We will call w′ the Poisson bivector andBw′ , the associated homomorphism between
tangent and cotangent spaces, is

dv 7→ ω(v − 1)∂n + ω(v2 − v)∂n̄ = ω(v − 1)(∂n + v∂n̄) = Xv

dn 7→ ω(1 − v)∂v + ω(n̄ − n)∂n̄ = Xn

dn̄ 7→ ω(v − v2)∂v + ω(n − n̄)∂n = Xn̄

from which we have the distribution of tangent subspaces that integrates to symplectic
leaves.

Remark 3.1. For every(v, n, n̄) the relation

(v − v2)Xn + (v − 1)Xn̄ + (n̄ − n)Xv = 0

holds, showing that the distribution is, at most, two dimensional at every point. If we
restrict ourselves to the point ofS1 given by n = n̄ = 0 as in the previous case, we
see that the distribution is exactly two dimensional in these points and thus every point
of the form (v, 0, 0) is contained in a two-dimensional symplectic leaf. ThusS1 is not a
Poisson subgroup of non-standard PoissonE(2). If we restrict ourselves to pointsv = 1 and
n = n̄ we see that the distribution vanishes and thus all these points are zero-dimensional
symplectic leaves. Again we are dealing with a subgroup (in matrix form this corresponds
to upper triangular unimodular 2× 2 real matrices) and it is isomorphic toR. ThusR is
a Poisson subgroup for the non-standard Poisson structure onE(2). This implies that the
corresponding homogeneous space, a cylinder, has a canonical covariant Poisson structure.
One further remark could be that in this case the discrete infinite groups are also a Poisson
subgroup. However we have to note that, as the Poisson structure is defined only at the
algebraic level, such subgroups are not closed, and thus cannot be given by annihilating an
element of the function algebra.

Again it may be interesting to confront the whole symplectic foliation with the primitive
ideal structure of its quantization, which could be computed using the fact thatEω(2) is an
iterated differential polynomial ring (as noted in [4]).

Proposition 3.2. The cylinderC, viewed as a homogeneous space of the non-standard
Poisson Euclidean group, can be parametrized as having its function algebra generated by
v, v̄ and v̄n̄ − vn = m with the covariant Poisson structure given by

{v, m} = −ω(v2 − 1).

Proof. It is sufficient to show that the two functionsv andm parametrize the cylinder, the
rest will follow immediately. That the functionv is invariant with respect to the action of
A is obvious, and an easy calculation also shows the invariance ofm. �
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Remark 3.3. From the explicit Poisson bracket in 3.3 one can obtain the corresponding
symplectic foliation on the cylinder. The distribution of tangent subspaces is

dv 7→ ω(v2 − 1)∂m = Xv

dm 7→ −ω(v2 − 1)∂v = Xm

and thus all the points on the linev = 1 are zero-dimensional symplectic leaves and all the
other points belong to a unique two-dimensional leaf.

Remark 3.4. Now we want to classify the covariant structures on the cylinder as in
proposition 2.6. Again multiplicative(E(2), w′)-Poisson structures are characterized by their
value at one point, sayv = 1, m = 0. At this point a bivector has the form% = k∂v ∧ ∂m

and, with the notation used in 2.5, has to fulfil the invariance condition

(φ(1,0))∗δ(P1) + P1 · % = 0

that reduces to the conditionP1 · % = 0 due to the triviality ofδ(P1). This condition is
always verified. This implies that the space of covariant Poisson structures has the form of
an affine one-dimensional space given that adjoining the structure of proposition 3.2 there is
an invariant bivector field extending%. Explicitly the possible Poisson structures are listed
in the following.

Proposition 3.5. There is a one-parameter family of covariant Poisson structures on the
cylinder, with respect to the non-standard PoissonE(2), given by

{v, m} = −ω(v2 − 1) + k.

Remark 3.6. As for the plane the casek 6= 0 shows a completely different symplectic
foliation. Just note that the bracket is trivial when

ωv2 + ω + k = 0

from which we obtain the solutions

v = ±
√

(1 + ω−1k).

The condition thatv is on the unit circle can be expressed asvv̄ = 1. Apart from the
singular situation in whichω−1k ∈ iR, there is always a special value ofk 6= 0 for which
1 + ω−1k (and thus its square roots) belong to the unit circle. Thus for every complexω

which is not purely imaginary there are always two values ofv for which the Poisson
bracket is degenerate. The corresponding symplectic foliation is then given by two lines of
points and two two-dimensional symplectic leaves between them. For all the other values
of k the distribution is two dimensional in every point and so the Poisson bracket induces
a symplectic form on the whole cylinder. Geometrically the leaves can be described as an
intersection between the cylinder itself and lines belonging to a one-parameter family of
planes all intersecting in a fixed line of the cylinder.

4. Quantum homogeneous cylinder

We want now to pass from the semiclassical situation of Poisson homogeneous spaces to
quantum homogeneous spaces, as defined for example in [6]. The standardEq(2) has been
treated in [2], where connections with the theory of spherical functions are also explained, so
that in what follows we will restrict ourselves to the non-standard case where the quantization
of the given Poisson structure can be obtained, as in [10], simply substituting the Poisson
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bracket with the commutator, leaving the coalgebra structure unchanged. Let us just note
the connections between [2] and proposition 2.6. The natural covariant Poisson structure
is exactly the semiclassical limit of the usual quantum plane and is, in fact, the only
quantum homogeneous spaces obtained by ‘quotient’ with respect to a proper quantum
subgroup, incidentally the quantization of the unique Poisson subgroup ofE(2). The
quantum hyperboloid of [2] has, as its semiclassical limit, the covariant Poisson structure
of 2.6 with k = −2 (and an analysis of symplectic leaves gives a clear meaning to the
appearance of the world ‘hyperbolic’ in its name). The fact that covariant Poisson structures
constitute a complete one-parameter family either suggests the possibility of other quantum
planes of which the two given in [13] should be, in a sense, paradigmatic, or asks for
an explanation of the failure in quantizing Poisson homogeneous spaces for values ofk

different from 0 and−2.
Let us move to the non-standard case. Let us recall [1] that the non-standard quantum

group is the Hopf algebra with the same coproduct, counit and antipode as the standard
quantum group and commutation relations obtained substituting the Poisson bracket with
the Lie bracket in the formulae at the beginning of section 3.

The classical projectionπ : G → M from one Poisson–Lie group to its homogeneous
space corresponds to an injective map on the function algebra levelπ̂ : F(M) → F(G).
In remark 3.6 it was stated that we can see this map as a map between the quantizations
and, requiring it to be an algebra map, we find the quantized commutation relations for the
Poisson homogeneous space. It is obvious how this works in the quantum plane case. This
implies that we can give the following definition.

Definition 4.1. The quantum cylinderCω is the algebra generated by the elementsv, v̄ and
m with the relations:

vv̄ = v̄v = 1 vm = mv − ω(v2 − 1) v̄m = mv̄ + ω(v̄ − v̄2)

and with the∗-structure:

v∗ = v̄ m∗ = −m.

Proposition 4.2. The quantum cylinder is a quantum homogeneous space of non-standard
Eω(2) in the sense of [6], i.e. it is a∗-invariant right coideal. Furthermore the elements
{vrms : r ∈ Z, s ∈ N } provide a basis as a vector space for this algebra.

Proof. Obviously the algebraCω is ∗-invariant. To prove that it is a right coideal in
Funq(E(2)) is sufficient to perform straightforward calculations on the generators. We
have

1v = v ⊗ v ∈ Eω(2) ⊗ Cω

1m = 1 ⊗ m + v̄n̄ ⊗ v̄ − vn ⊗ v ∈ Eω(2) ⊗ Cω.

To prove the linear independence of elementsvrms let us first observe thatCω is a skew
polynomial ring [7] and explicitlyCω = R[m; δ] whereR = C[v, v−1] andδ(v) = (v2 −1).
Thus it is possible to define the degree inm, that we will denote degm, for every element
in Cω and prove that ifn andu are inCω then

degm(nu) = degm(n) + degm(u).

It is then clear that there cannot be linear relations involving monomials with degm 6= 0. On
the other hand linear relations involving only elements ofm-degree 0 are linear relations in
C[v, v−1] and thus they should be trivial.
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Let us observe thatCω, being a skew polynomial ring, is easily shown to verify good
algebraic properties through very general arguments. For example it is a Noetherian integral
domain. �

In [6] it is shown how, in a fixed Hopf algebraHq , it is possible to construct a Galoisian
reciprocity between∗-invariant subalgebras and right coideals on one side and Hopf∗-ideals
on the other side through the assignments:

6 : B 7→ AB = 〈(Sn − ε1)(b), b ∈ B, n ∈ Z〉
5 : A 7→ BA = {b : (π ⊗ id) ◦ 1(b) = 1 ⊗ b}

whereπ is the projection from the whole Hopf algebra onto the quotient with respect toA.
It is then natural to give the following definition.

Definition 4.3. The closure of a quantum homogeneous spaceC in the Hopf algebraHq

is the homogeneous spaceB = 5 ◦ 6(C).

Proposition 4.4. The closure of the quantum cylinderCω is the quantum homogeneous
space corresponding to the quantum subgroup of non-standardEω(2) given by the Hopf-∗-
ideal I = 〈v − 1, n − n̄〉.
Proof. The notation in the last line of the proposition means thatI is the ideal generated
by elements enclosed in brackets. We want to verify thatI is really a Hopf-∗-ideal. First
we have to verify that this ideal is a bilateral coideal, i.e.

1I = I ⊗ Eω(2) + Eω(2) ⊗ I ε(I) = 0.

It is sufficient to prove it for the generators. The second condition is trivial. The first
follows from

1(v − 1) = v ⊗ v − 1 ⊗ 1 = (v − 1) ⊗ 1 + v ⊗ (v − 1)

1(n − n̄) = v̄ ⊗ n + n ⊗ 1 − v ⊗ n̄ − n̄ ⊗ 1 = v̄ ⊗ (n − n̄) + (n − n̄) ⊗ 1 + (v̄ − v) ⊗ n̄.

We next have to proveS-invariance. Again on generators we have

S(v − 1) = (v̄ − 1) = −v̄(1 − v)

S(n − n̄) = m = v̄(n̄ − n) − (v − 1)(v̄ + 1)n

so thatS(I) ⊂ I. As for the∗-structure we have

(v − 1)∗ = v̄ − 1 = −v̄(v − 1) ∈ I (n − n̄)∗ = n∗ − n̄∗ = −(n − n̄) ∈ I.

Next we have to verify that the closure ofCω, as defined in (4.3), coincides with the set

BI = {b ∈ Eω(2) : (π ⊗ id) ◦ 1(b) = 1 ⊗ b}
whereπ : Eω(2) → Eω(2)/I is the natural projection. Direct calculations show that indeed
v andm belong to this set and thus thatCω is contained inBI . For example:

(π ⊗ id)(1m) = 1 ⊗ m + π(v̄(n̄ − n)) ⊗ v̄ + π((v̄ − v)n) ⊗ v.

The stabilizer ideal ofCω is

ACω
= 6(Cω) = 〈Sn(c) − ε(c)1, b ∈ Cω, n ∈ Z〉.

Let us note that(S − ε1)(m) = n − n̄ and (S − ε1)(v̄) = v − 1 so that the generators of
I belong toACω

proving I ⊂ ACω
. On the other hand from general argumentsCω ⊂ BI

implies the opposite inclusion so that

ACω
= I.

This proves that the closure ofCω is exactlyBI . �
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5. Conclusions

Analysing the Poisson structures and their Poisson homogeneous spaces for the Euclidean
group we have recovered the semiclassical limit of the results in [2] for quantum
homogeneous planes, showing that, in this limit, there is a one-parameter family of planes,
as is the case for spheres [12, 13]. Furthermore we have determined a quantization of a
Poisson structure on the cylinder compatible with a quantum homogeneous structure with
respect to a non-standard quantum Euclidean group, showing that it can be recovered from
an explicit quantum subgroup. Again we have shown that there is a one-parameter family
of covariant Poisson structures on this space. The method of looking at the semiclassical
limit situation for hints about the nature of general quantum homogeneous spaces could
perhaps be helpful in all those situations in which the function algebra is explicitly given
through generators and relations.
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